
Test Suite for Evaluating Performance
of MPI Implementations That Support

MPI_THREAD_MULTIPLE

Rajeev Thakur and William Gropp
Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, Illinois, USA

2

Introduction

 Thread-safe MPI implementations are becoming increasingly
common

 Thread safety does not come for free, however
 Implementation must protect certain data structures or parts of

code with mutexes or critical sections
 Implementations often focus on correctness first and performance

later (if at all)
 Users need a way to determine how efficiently an implementation

can support multiple threads
 Hence, a performance test suite is needed

3

Overview of MPI and Threads

 MPI-2 defines four levels of thread safety
– MPI_THREAD_SINGLE: only one thread

– MPI_THREAD_FUNNELED: only one thread that makes MPI calls

– MPI_THREAD_SERIALIZED: only one thread at a time makes MPI calls

– MPI_THREAD_MULTIPLE: any thread can make MPI calls at any time

 User calls MPI_Init_thread to indicate the level of thread support required;
implementation returns the level supported

 Our test suite focuses on the MPI_THREAD_MULTIPLE case

Performance Expectations

 Users often have the following performance expectations
– The cost of thread safety, compared with say

MPI_THREAD_FUNNELED, is low
– Multiple threads making MPI calls, such as MPI_Send or

MPI_Bcast, can make progress simultaneously
– A blocking MPI routine in one thread does not consume

excessive CPU resources while waiting
 How true are they in practice?

Categories of Tests

 Cost of thread safety
– One simple test to measure overhead of

MPI_THREAD_MULTIPLE
 Concurrent progress

– Tests to measure concurrent bandwidth by multiple threads of a
process to multiple threads of another process, compared with
multiple processes to processes

 Computation overlap
– Tests to measure overlap of communication with computation
– Tests to measure ability of an application to use a thread to

provide a nonblocking version of a communication operation

Platforms

 Linux Cluster
– “Breadboard” cluster at Argonne with GigE
– Each node has two dual-core 2.8 GHz AMD Opterons
– MPICH2 1.0.5, Open MPI 1.2.1

 Sun Fire SMP
– From the Sun cluster at Univ. of Aachen
– Sun Fire E2900 with 8 dual-core UltraSPARC IV 1.2 GHz

CPUs
– Sun’s MPI (ClusterTools 5)

 IBM SMP
– IBM p655+ SMP from the DataStar cluster at SDSC
– Eight 1.7 GHz POWER4+ CPUs
– IBM’s MPI

Test 1: MPI_THREAD_MULTIPLE Overhead

 Measures ping-pong latency for two cases of a single-threaded
program
– Initializing MPI with just MPI_Init
– Initializing MPI with MPI_Init_thread for

MPI_THREAD_MULTIPLE
 Demonstrates overhead of acquiring and releasing locks even

when not needed

MPI_THREAD_MULTIPLE Overhead on Linux Cluster

MPI_THREAD_MULTIPLE Overhead on Sun & IBM SMPs

Tests with Multiple Threads versus Processes

10

T

T

T

T

T

T

T

T

P

P

P

P

P

P

P

P

11

Concurrent Bandwidth Test on Linux Cluster

12

Concurrent Bandwidth Test on Sun and IBM SMPs

13

Concurrent Latency Test on Linux Cluster

14

Concurrent Latency Test on Sun and IBM SMPs

Test 4: Concurrent Short-Long Messages

 “A” sends a long message to C
 “B” simultaneously sends a series of short messages to D
 Measure the variation in time taken by the short messages when

– A and B are threads of one process
– A and B are separate processes

long message

series of short
messages

A

B

C

D

Concurrent Short-Long Messages Test on Linux
Cluster

Concurrent Short-Long Messages Test on Sun & IBM
SMPs

Test 5: Computation/Communication Overlap

 Measure time taken by the communication-computation loop with
and without the thread

 for (i=1 to N) {
 MPI_Isend()
 MPI_Irecv()
 Computation
 MPI_Waitall()
 }

Thread

MPI_Recv(self, tag)

MPI_Send(self, tag)

Comp/Comm Overlap Test on Linux Cluster

ead

Comp/Comm Overlap Test on Sun & IBM SMPs

Test 6: Concurrent Collectives

T
T

T
T

T
T

T
T

P
P

P
P

P
P

P
P

T
T

T
T

P
P

P
P

Allreduce

Allreduce

Allreduce

Allreduce

Allreduce

Allreduce

Allreduce

Allreduce

Allreduce

Allreduce

Allreduce

AllreduceAllreduce

Allreduce

Allreduce

Allreduce

Concurrent Collectives Test on Linux Cluster

Test 7: Concurrent Collectives and Computation

 Uses p+1 threads on a node with p processors
 Threads 0 to p-1 perform some computation iteratively
 Thread p does an MPI_Allreduce with corresponding thread on

other nodes
 After the Allreduce completes, thread p sets a flag
 This flag stops computation in other threads
 The average number of compute iterations completed on the

threads is reported
 This number is compared with the case where there is no

allreduce thread

Test 7: Concurrent Collectives and Computation

C
om

pu
ta

tio
n C

om
pu

ta
tio

n C
om

pu
ta

tio
n

p compute
threads

MPI_Allreduce

Concurrent Collectives and Computation Test on
Linux Cluster

(the higher
 the better)

26

Concluding Remarks

 There is a need for tests that shed light on the performance of
MPI implementations in the presence of multiple threads

 The results indicate relatively good performance with MPICH2
and Open MPI on Linux clusters, but poor performance with IBM
and Sun MPI on IBM and Sun SMPs

 We plan to add more tests, such as to measure overlap of
comp/comm with MPI-2 file I/O and connect-accept features

 We welcome contributions from others to the test suite
 Available for download from

http://www.mcs.anl.gov/~thakur/thread-tests

